Fast verified computation for solutions of algebraic Riccati equations arising in transport theory
نویسنده
چکیده
منابع مشابه
Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations
This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...
متن کاملNonsymmetric Algebraic Riccati Equations and Hamiltonian-like Matrices
We consider a nonsymmetric algebraic matrix Riccati equation arising from transport theory. The nonnegative solutions of the equation can be explicitly constructed via the inversion formula of a Cauchy matrix. An error analysis and numerical results are given. We also show a comparison theorem of the nonnegative solutions.
متن کاملMethods for Verified Solutions to Continuous-time Algebraic Riccati Equations
We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuoustime algebraic Riccati equation A∗X + XA + Q = XGX, building on the work of [B. Hashemi, SCAN 2012] and adding several modifications to the Krawczyk procedure. Moreover, we describe a new O(n) direct method for verification, based on a fixed-point formulation of the e...
متن کاملRiccati Equations from Stochastic LQR Problem
In this paper we consider a class of matrix Riccati equations arising from stochastic LQR problems. We prove a monotonicity of solutions to the differential Riccati equations, which leads to a necessary and sufficient condition for the existence of solutions to the algebraic Riccati equations. In addition, we obtain results on comparison, uniqueness, stabilizability and approximation for soluti...
متن کاملGeneral Algebraic and Differential Riccati Equations from Stochastic LQR Problem
In this paper we consider a class of matrix Riccati equations arising from stochastic LQR problems. We prove a monotonicity of solutions to the differential Riccati equations, which leads to a necessary and sufficient condition for the existence of solutions to the algebraic Riccati equations. In addition, we obtain results on comparison, uniqueness, stabilizability and approximation for soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017